Moth Abundance and Diversity in Intensively Managed Early-seral Forests of Oregon

Jake Verschuyl, NCASI Heather Root, Weber State University Paul Hammond, Oregon State University (ret.) Melissa Scherr, Northwest Entomological Research Center Matt Betts, Oregon State University

Role of Herbicides

Post harvest = abundant early seral competition

Silvicultural herbicides target competitors

Reduced seedling growth with competition for water and light

Herbicides help create free-to-grow conditions

willamin INTENSIVE FOR STUDY

> BI Harvest-in Fall 2009 Spring 2010

Continued annual review and backpack spray in Intensive treatment

Washington

Oregon

Idaho

IFM Study Major Topics

- Avian occupancy, abundance, and diversity
- Avian demography
- Ungulate browse
- Vegetation community composition
- Moth community composition, abundance, and diversity
- Food webs and top-down pressure by birds
- Tree growth, survival and trade-offs

Why Moths?

- Represent substantial biodiversity in the Pacific Northwest with greater than 2000 species known in Oregon
- Play a key role in food web dynamics as prey for arthropod and vertebrate predators
- Large effect on pollination and herbivory
- Many moth larvae feed exclusively on a single taxonomic group of plants
- Thus moth species diversity is often representative of functional diversity especially in forested systems
- Most species are also sensitive to changes in moisture and temperature which are affected by forest management

Butterflies and Moths at the H.J. Andrews Experimental Forest

(10%)

(27%)

564 species

Larval	Foodp	lant
	<u>_</u>	100

conifers

flowering plants

508 species (90%)

56 species

<u>Habitat</u>

forest

412 species (73%)

meadow

152 species

Objectives

Determine the effect of management intensity treatments on:

• Moth abundance/biomass and species richness

• Moth community composition

• Plant specialist moth abundance by group (broadleaf, forb, conifer feeders)

Moth Trapping

Black light traps placed 3 per stand near point count locations

<u>10 m</u>

10 m

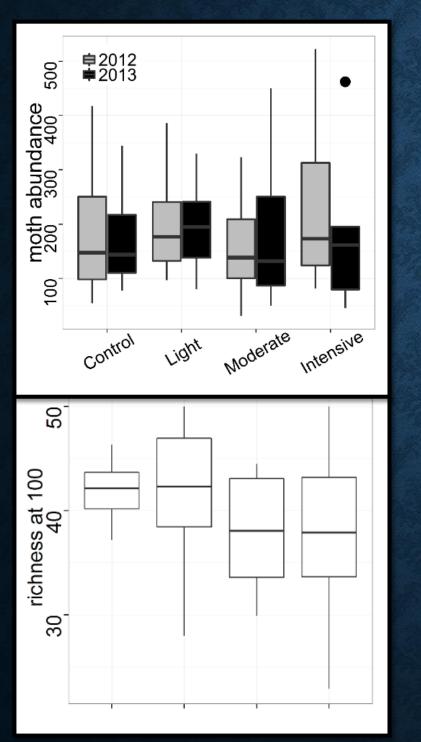
Moth Trapping and Taxonomy

- 32 stands; 3 traps/stand
- Sampled once monthly, May August
- 2560 trap nights over 2 years
- Avoided full moon and rainy conditions

Vegetation Sampling

- Shrub cover collected around avian point count locations in each stand
- 9 3 meter radius plots per stand (approx. 84 m²) with ocular estimation of cover
- Plant cover analyzed within Conifer, Herbaceous, and Broadleaf (trees and shrubs) categories to correspond with feeding associations of moth functional groups

Shrub cover after 3 years of stand growth

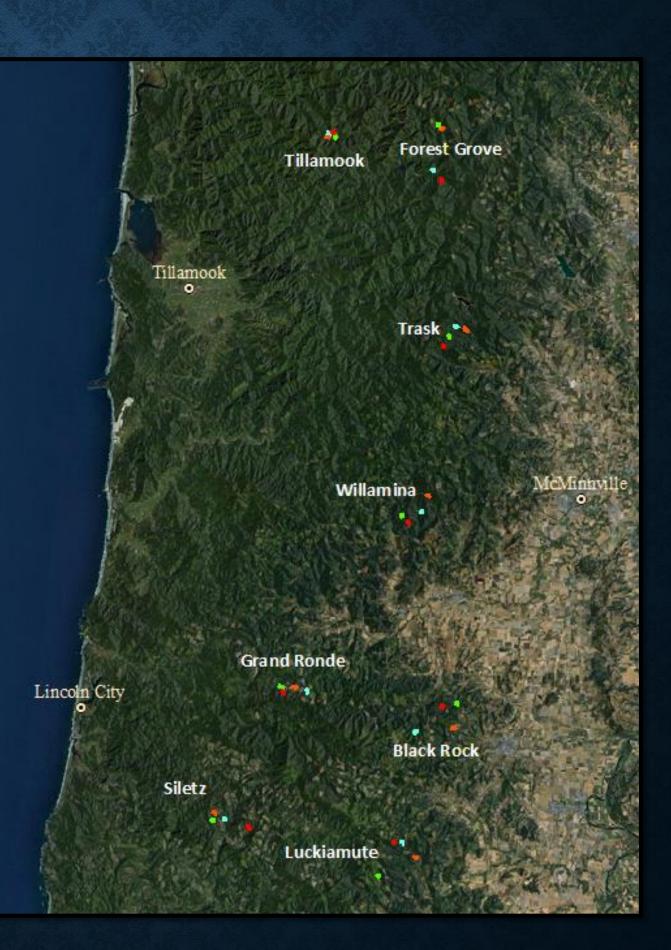

Results

- 316 moth species
- 59 were only captured once
- > 12,000 moths collected (6432 in 2012; 5821 in 2013)
- 30 new species records for the Coast Range; 1 state record

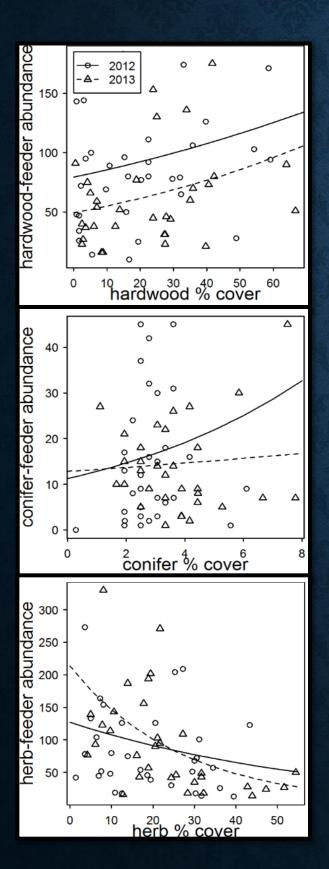
Moth Abundance and Richness

Moth richness and abundance in four herbicide treatments in eight blocks in the Oregon Coast Range, USA. • No evidence that moth abundance differed among treatments in either year.

Weak evidence of a treatment effect on moth species richness (est. at 100 individuals; p = 0.04)


• Control and Light treatments were estimated to have 8.8 more species per stand compared with the Moderate and Intensive treatments (SE = 3.0, post-hoc test p = 0.035).

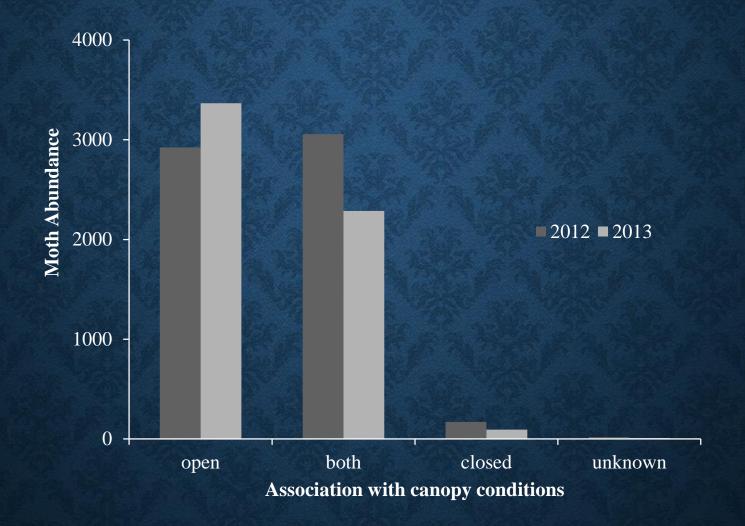
The "Block Effect" and Biophysical Setting


 Block was included as a random effect in all richness and abundance models

When block was excluded:

- Elevation (p = 0.02) and latitude (p < 0.001) were individually significant in the abundance model, both having a negative effect on abundance.
- Elevation (p = 0.02) and longitude (p = 0.02) were significant fixed effects in the richness model, both having a negative effect on richness.

Foraging Guild Results



- Hardwood-feeding moth abundance was not associated with hardwood percent cover
- Conifer-feeding moths were not affected by the percent cover of conifers or year
- Herb-feeding moths also did not show a significant relationship with herb cover
- Early seral community is dominated by herb-feeding moths, while hardwood-feeding moths are less abundant

Were Moths Drawn in From Adjacent Stands?

Were Moths Drawn in From Adjacent Stands?

Very few of the moths captured were species typically associated with closed canopy forest (2.7% and 1.6% in 2012 and 2013)

Conclusions

- Moth diversity was exceptional; high numbers of species seen only once suggest additional diversity may remain to be discovered
- Early seral moth community is unique in the Coast Range and will only be sustained by the continuous availability of newly disturbed habitat
- Taki et al (2010) found Japanese plantations supported fewer moth species than naturally regenerated forests
- The lack of treatment effect on species' abundances was unexpected; effect of site/block is stronger than the treatment
- Spatial variation in species composition has been shown to be substantial across sites with similar vegetation at regional scales (all Ohio; Summerville 2001)

Questions?